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INTRODUCTION 

A previous paper' reported a study of the basic 
variables involved in the drying of wheat kernels 
in a stream of dry, isothermal air. It was shown 
that the gross conditions for application of an in- 
tegral diffusion equation existed, and a conven- 
tional correlation of the data was therefore formu- 
lated by assuming the applicability of the equation 
for diffusion in spheres (the standard integral 
which most nearly corresponds to the geometry of 
the wheat kernel). 

While this approach at  once afforded a practical 
solution, it is a theoretically unsatisfying substi- 
tute for a general approach to the rigorous treat- 
ment of nonstationary-state diffusion in solids 
of geometry too complex to allow analytical inte- 
gration of the differential diffusion equation, and 
leads to an indeterminate error in the calculation 
of the diffusion coefficient. The present research 
was therefore undertaken to develop mathematical 
methods for the general solution of problems on 
nonstationary-state diffusion in solids of arbitrary 
shape, and, in particular, to obtain an improved 
solution to the drying of the fully exposed wheat 
kernel. In the experimental work, drying of 
wheat was studied under the simplest conditions 
at constant temperature and zero external resist- 
ance to mass transfer. The latter condition 
was assured by the use of high vacuum. Analysis 
of the data led, finally, to an integral diffusion 
equation which shows that the decrease in drying 
rate with time is slightly smaller than that pre- 
dicted by the equation for spheres. 

and to examine methods for the subsequent corre- 
lation of data. 

A. Derivation of a General Diffusion Equation 

Consider the diffusion of a substance through an 
elemental volume d x  - d y  -dz  arbitrarily located 
within a solid. Diffusive flow from the surface 
x to the surface x + d x  is caused by a difference 
between the thermodynamic potentials a t  these 
surfaces. When this is due to a difference in con- 
centration, the proportionality between the dif- 
fusion current and the potential gradient is con- 
ventionally expressed by Fick's first law of dif- 
fusion : 

where the proportionality factor D, the Fickian 
diffusion coefficient, is, in the general case, a func- 
tion of concentration, position, and direction. In 
the stationary state the concentration at a given 
point is invariant; hence the sum J, + J, + J ,  is 
constant and 

bC bC dC 

b X  b y  bz 
D,- + D, - + D, - = constant (2) 

In the nonstationary state, the diffusion current 
is a function of time. Suppose that the amount of 
substance diffusing across the elemental area 
dyadz a t  x in a differential time dt is J,.dy.dz.dt, 
while a t  x + d x  it is [Jz + (dJ, /dx)dx]dy.dz .dt ,  
etc. The differences in input and output of the 
substance result in an accumulation in the element 
equal to (bc /d t )d t -dx-dy .dz .  On equating the 
total difference between input and output to the 

The object of this section is to formulate a accumulation, and putting J, = -D, bc/dx, 
method for general evaluation of the diffusion etc., we obtain the nonstationary-state differential 
coefficient from data on the nonstationary state 

212 

THEORETICAL 

diffusion equation in Cartesian coordinates: 
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(3) 

Solution of the differential equation, or its equiva- 
lent in cylindrical or spherical coordinates, is 
not difficult if the diffusion coefficient is constant 
and if adequate initial and boundary conditions 
are given. Simplest are those cases in which sym- 
metry exists about a point, line, or plane; the 
differential equations for a constant diffusion coeffi- 
cient are of the general form: 

(4) 

where r is a coordinate whose axes are everywhere 
perpendicular to the bounding surface and whose 
origin is at the center of symmetry, and n has the 
value zero for planar symmetry, unity for axial 
symmetry, and two for spherical symmetry. 

However, to approach solution from a general 
viewpoint, let us consider diffusion in a solid of 
arbitrary shape. The initial and boundary con- 
ditions of present interest are: 

c = co 

c = cs 

a t t  = 0 

a t s  = O a n d t > O  
(5) 

where s is a general coordinate whose origin is a t  
the bounding surface and whose axes are every- 
where perpendicular to the surface (in eq. (4), s 
= ro - r ,  where ro is the distance from the center of 
symmetry to the surface). We shall examine 
the general form of solutions-for a constant dif- 
fusion coefficient-from the neighborhood of t = 
O t o t  = 00. 

It is evident that, near t = 0, concentration 
changes in the solid, under the stated conditions, 
will be confined to  the neighborhood of the surface. 
Therefore, in the first instant of time, the state 
of affairs near the surface approximates the case 
of a semi-infinite, plane-faced solid. The solution 
of eq. (4) for this case takes the form of the Gauss 
error integral? 

1-c=-- lz exp - 2 2 1  (6) dS 
which gives the concentration as a function of the 
distance from the surface; where 

c - cs c = __- 
co - cs 

and 

s z=- 
2 d D t  

(7) 

To obtain the average concentration in a finite 
solid as a function of time near t = 0, we make a 
material balance about the bounding surface : 

where, by Fick's first law; 

J = -D($) 
s = o  

(9) 

(Note that for a constant diffusion coefficient J 
approaches constancy over the surface as the time 
t approaches zero.) The concentration gradient 
a t  the surface, (b~ /bs )~=, ,  is obtained by differenti- 
ating eq. (6). Putting bC = & / ( G O  - c,) and 
bZ = bs /2di%,  and noting that exp {-Z2) 
approaches unity as t and s approach zero, we find 
that 

On substituting for J and integrating, we obtain, 
from eq. (8), 

2 C - 1  - - X x s X + ~ , o r  4; 

where 

This result provides a first approximat,ion to a 
general solution, valid in the neighborhood of t = 0, 
of the nonstationary-state differential diffusion 
equation. Note that the prescribed form of the 
solution for t 2 0 is 

c = f(X) (13) 
To obtain a more accurate approximation, we 

assume that f(X) can be represented, in the neigh- 
borhood of X = 0, as a power series in X ;  we find, 
(Maclaurin's series) : 

+ . . . + -  f "(0) X"+ . . .  (14) 
n !  
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Fig. 1. Y = (1  - c ) / X  as a function of X ,  showing the analytical solu- 

tions for a plate of infinite area, a cylinder of infinite length, and a sphere. 
Y X  = 1 is the trivial solution for the neighborhood of t = m.  

Equation (11) immediately gives f(0) = 1 and 
f’(0) = -2/&. The higher derivatives, .f” 
(0), etc., are clearly dependent on solid shape. 
However, since the series should converge rapidly 
near X = 0, terms higher than f”(0) will be neg- 
lected, giving for our final approximation 

The range of validity of this equation may be 
tested by comparing it with some specific solutions 
of the differential equation, eq. (4). The solutions* 
of interest, subject to the conditions of eq. (5), 
are as follows.2 

The solution for a plate of infinite area is given 
by : 

8 ”  1 c = -  c 
r2 n=O (2n + 1)2 4 

(16) 
The solution for an infinitely long cylinder is 

given by : 

where Jo(x) is the Bessel function of zero order 
* Note that in X the volumeto-surface ratio, V/S ,  re- 

places the center of symmetry to surface distance, TO, usually 
appearing in these solutions; i.e., the radius of the sphere and 
cylinder and the half-thickness of the plate. For the plate 
V / S  = r0; for the cylinder, V/S = r0 /2 ;  and for the sphere, 
v/s = T 0 / 3 .  

and Xn are the roots (2.405, 5.520, 8.654, . . .,) of 

The solution for a sphere is given by: 
Jo(x) = 0. 

To test eq. (15), we determine (1 - c ) / X  as a 
function of X (Fig. 1). It is seen that, in the 
neighborhood of X = 0, the slope, f”(0)/2, is es- 
sentially constant. For the plate, f”(0) = 0 to 
approximately X = 0.5 (c = 0.45); for the cyl- 
inder, f”(0) = 0.538 to X = 0.8 (c = 0.3); and 
for the sphere, f”(0) = 0.661 to X = 1.0 (c = 
0.2) ; where the limits of validity are quoted for 
an error in 1 - c of less than 1%. It can be con- 
cluded, therefore, that eq. (15) accurately repre- 
sents the solution in the neighborhood of X = 0. 

We turn now to the general solution in the 
neighborhood of X = 00. Here the examples, 
eqs. (16)-(H), indicate that 

a C = - exp { - p 2 ~ 2 )  
P2 

(19) 

where a and /3 are constants for a given solid shape. 
Table I gives the values of a, P, and f”(0) for the 
examples, and shows that the difference p 2  - a 
is nearly constant and has the maximum value 
(r2 - 8)/4. The limits of validity of eq. (19) 
for an error in C smaller than 1% are: for the plate, 
X > 0.35 (c < 0.6); for the cylinder, X > 0.4 
(c < 0.4) ; and for the sphere, X > 0.8 (c < 0.3). 
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These limits overlap with those of eq. (15); hence 
it appears that eqs. (15) and (19) provide a general 
solution for all values of X from zero to infinity. 
Note that the examples leading to this deduction 
represent the very extremes of the shapes that can 
be produced by flattening, elongation, and com- 
paction of a solid. 

TABLE I 
Constanh in the Diffusion Equations 

4 b =  
8 2  - a 

4- 
Solid a p2 a / B 2  7r2 - 8 f"(0) 

Plate of infinite 
area 2.000 2.467 0.810 1.000 0 

Cylinder of in- 
finite length 1.000 1.446 0.691 0.953 0.538 

Wheat 0.862 1.300 0.663 0.940 0.588 
Sphere 0.667 1.097 0.608 0.918 0.661 

B. Interpretation of Experimental Data 

(i) Treatment of data in the neighborhood of 
t = 0. Equation (15) can be written, in terms of 
the experimentally measured variables, 

k = ko - b z / t  (20) 

where 

co - c k = -  
4 

Hence, if the equation is applicable, the ratio, k ,  
of the decrease in the average concentration t.0 
the square root of the time should be a linear func- 
tion of the square root of the time, with a slope - b 
and an intercept ko at t = 0. 

(ii) Evaluation of the surface concentration, cs. 
Equations (20)-(23) show that, if the diffusion 
coefficient is independent of concentration, ko, b, k,  
and (co - E) should all be linear functions of the 
initial concentration, co, with identical intercepts 
co = cs a t  ko, b, k ,  and co - C equal to zero ( k  and 
co - C being evaluated a t  a constant exposure time 
0 .  

(iii) Calculation of the diffusion coefficient. 
Equation (22) gives, for the diffusion coefficient, 

(iv) The solution for the neighborhoad of t = 0. 
When the surface concentration and the diffusion 
coefficient have been calculated, eq. (23) gives the 
value of the coefficient f " (0) .  Equation (15) then 
gives the solution of the neighborhood of t = 0. 

(v) Treatment of data in the neighborhood of t 
- - m. The surface concentration, as noted under 
section (ii), is generally obtainable from the linear 
regression of co - 5 on co; hence c can be calculated 
from data confined to the neighborhood of t = m. 

Equation (19) shows that In c should be a linear 
function of time, extrapolating to In a/P2 at t = 0 
and having a slope -P2(S/V)2D. Rigorous evalu- 
ation of a, P, and D is not possible, unless one of 
them is determined independently. However, 
Table I indicates that P2 - a = 6(?r2 - 8)/4, 
where 6 lies between 0.918 and unity. Since 6 
is so nearly constant, it may be assumed that 

= 1 for plate-like solids, while for bluff-shaped 
solids 6 = 0.92. Remembering that a/P2 is 
directly obtainable from the data, is given by 

A similar method can be used to approximate 
the values of a and from the solution for the 
neighborhood of t = 0. Since a and P are so closely 
related, it may be assumed that P2 and 6 are unique 
functions of f"(O), as given by the data for the 
plate, the cylinder, and the sphere (Table I and 
Fig. 2). The constant a than follows from eq. 
(24). 

f "(0) 

2 3 
0 

I 

P2 
Fig. 2. The apparent relation between the coefficients f" 

(0) and p2. The points represent, left to right, the sphere, 
the cylinder of infinite length, and the plate of infinite 
area. 

(vi) Evaluation of C in the case of moisture dif- 
Equations (15)-(19) were derived for a 

For such a solid, 
fusion. 
solid of constant dimensions. 
c is exactly equal to B, where 
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AT = (m - ms)/(mo -m,) (25) 

However, in most natural and synthetic poly- 
mers, moisture adds its volume (as liquid water) 
to the volume of the solid. Since it is not practi- 
cable to account for the resulting swelling, it must 
be assumed that c = in these cases also. The 
resulting error should not be serious so long as mo - 
m, is reasonably small compared with the specific 
volume of the solid (in ~m.~ /g . ) .  

(vii) Evaluation of the volume-to-surface ratio 
in moisture diffusion. It is not practicable to  ac- 
count for swelling in evaluating the volume-to- 
surface ratio, V/S .  If mo - m is very much smaller 
than mo = m,, V/S  may be evaluated a t  the 
initial moisture, mo. When mo - m is comparable 
with mo - m,, V /S  is best evaluated at the sur- 
face moisture, m,. 

Rearrangement of the ratio V / S  gives 

The factor 4nrO2/S is the ratio of the surface area 
of a sphere of equal volume to the surface area of 
the solid, and is a shape factor commonly known 
as the sphericity and denoted by &. It can be 
assumed that the sphericity of a swelling solid is 
constant, unless swelling is unusually anisotropic. 

(vii) Static and dynamic equilibrium relations. 
The methods described under section (ii) give 
dynamic (extrapolated) values of the surface con- 
centration, es. Static methods, such as adsorption- 
desorption equilibrium studies, give the true sur- 
face concentration a t  t = a, when c = cs. It 
might appear that both methods should give the 
same value of cd for a given boundary condition 
in the surroundings. In  actuality, three, and 
probably more, sources of divergence may be an- 
ticipated; (a) adsorption-desorption hysteresis; 
(b) swelling; and (cl the manifestation of dynamic 
pseudo-equilibria when the static equilibrium con- 
centration is outside the range of concentration 
independence of the diffusion coefficient. Gener- 
ally, dynamic values of cJ can be expected to  be 
equal to or greater than static values determined 
under similar conditions. 

(ix) Sources of experimental deviations from 
the diffusion equations. Failure of experimental 
data to follow eqs. (15)-(19) may be due to any 
of the following factors. 

(a) The diffusion coefficient varied with time 
because the temperature of the solid was not 
constant. 

(b) The surface concentration varied with time 
because the concentration of the diffusing species 
in the surroundings was not constant. 

(c) The diffusion coefficient is dependent on con- 
centration in the range studied. (Equation 20 
may still be followed, but ko, k ,  and b will usually 
be curvilinear functions of the initial concentration. 
At a given concentration, ko2 should show approxi- 
mately the same temperature dependency as the 
diffusion coefficient a t  tfhat concentration. The 
relation between ko and the initial concentration 
a t  constant temperature may provide the basis 
for an empirical correlation.) 

(d) The diffusion coefficient is dependent on 
position within the solid. (Empirical correlations 
may be formulated as in the preceding case. How- 
ever, the net effect may be simply equivalent to a 
distortion of the solid geometry, accomplished 
without affecting the apparent applicability of the 
diffusion equations, but lending to an indeter- 
minately weighed diffusion coefficient.) 

(e) The process occurring is not diffusion. (This 
may be suspected if f”(0) falls outside the range 
enclosed by the sphere and the plate (Table I) or 
if the relation with the S/V ratio required by the 
diffusion equations is not obeyed.) 

MATERIALS AND METHODS 

Wheat 

The Thatcher wheat selected for study was of 
No. 2, first generation, registered seed grade. 
Samples a t  moisture levels from 7.6 to 280/,, dry 
basis, were prepared and stored as previously 
reported,‘ except that 0.1% each of candidin 
and neomycin was added to the water used in 
conditioning to suppress the growth of fungi. 

Kernel Density 

The kernel density was determined pycnomet- 
rically with toluene. Table I1 summarizes the 
results for moistures from 7.6 to 20.270, dry basis. 
The calculated density of moisture-free wheat, 
p s ,  is seen to be constant, showing that the volume 
of moisture, which is calculated as liquid water, 
is added directly to the volume of the moisture-free 
wheat. The formula relating density to moisture 
content is 

where p is the density (in g . / ~ m . ~ )  at a moisture 
content m (in g./g.) dry basis. 
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TABLE I1 
Density of Wheat 

P 

ps = 1 + m(1 - P )  

mo, PI 
g./g. g . / ~ m . ~  

0,0761 1.400 
0.0907 1.406 
0.1078 1.393 
0.1311 1.370 
0.145 1.379 
0.174 1.369 
0.202 1.350 

1.444 
1.460 
1.455 
I .  440 
1.459 
1.463 
1.453 
1.453 f 0.006 

Volume- to-Surface Ratio 

It has been indicated in the theoretical section 
that, when the moisture loss mo - m is comparable 
to  the limiting moisture loss ma - m,, the volume- 
to-surface ratio of a solid, V/S ,  may be calcu- 
lated a t  the surface moisture content, ma. Surface 
moistures in the present study were in the range 
9.9-10.670, dry basis. Kernel dimensions were 
measured on a sample of wheat a t  10.8q/, and re- 
quired no correction. 

The mean kernel volume was calculated from the 
weight of a sample of 2000 kernels, according to the 
formula : 

- zw v=-- 
Pn 

where w is the weight of a kernel and n is the num- 
ber of kernels. The value found was P = 0.0205 
cm. 3/kernel. 

To  determine the mean surface area per kernel, 
measurements of the maximum diameter, dma,, the 
minimum diameter, dmln, and the length, 1, were 
made in a sample of 120 kernels; (the location of 
the diameters is shown in Fig. 3). The mean sur- 
face area is correctly calculated as 

(28) 

However, because the kernel size distribution (Fig. 
3) was narrow and the diameters d,,, and dmi, 
are nearly the same, it was estimated that there 
is less than 1% error in calculating S as 

S = K ( t ) ( + )  

where K is a constant and d, = (d,,, + dmfn)/2. 
The mean visible surface area was therefore esti- 

mated by the formula for an ellipsoid: 

where e = w / k .  The mean values of length 
and diameter where 1 = 0.522 cm.; d,,, = 0.296 
cm.; dmi, = 0.266 cm. Hence & = 0.281 and 
S = 0.398 cm.2. 

1 1 " " " " ' 1 1 1  

RELATIVE PARTICLE S IZE 
Fig. 3. The size distribution in the dimensions of the 

wheat kernel, based on measurement of 120 kernels. Shown 
is the number fraction of kernels within 0.04 unit brsckets 
of relative particle size, where relative particle size is defined 
as the ratio between a given dimension and its arithmetic- 
average value. 

However, it appears that, in vacuum drying, 
the area enclosed by the cheeks of the kernel, 
within the crease, is fully exposed and should be 
added to the visible area. This area was esti- 
mated as one half of the elliptical area 7iimln/4, 
or 0.055 cm.2/kernel. The total surface area is 
thus 0.453 cm.2/kernel, and the volume-to-surface 
ratio is V / S  = 0.0453 em. The equivalent spheri- 
cal radius is rtl = 0.170 cm. and the sphericity is 
$ = 0.80. 

When the area within the crease is omitted, 
P/S = 0.0515 cm. and $ = 0.91. 

Moisture Analysis 

Initial moistures were determined by drying 
samples of ground wheat four hours a t  110°C. 
under high vacuum. Moistures so determined 
agreed within 0.001 g./g. with moistures found 
by drying sixteen hours a t  30°C. a t  high vacuum, 
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followed by four hours at 110°C. The method 
was chosen to give results closely approximating 
the "true" moisture  ont tent.^ 

High Vacuum Drying Technique 

Samples of 70-100 kernels were dried in thin- 
walled brass tubes 0.8 cm. in inside diameter and 
10 cm. in length. The tubes were attached by 
rubber tubing to a vacuum manifold and were 
immersed in a constant temperature bath con- 
trolled within ='=O.l"C. An initial warming period 
of 20-30 minutes allowed the samples to reach the 
temperature of the bath before drying was begun. 
The difference between the initial and final weights 
of a sample gave the moisture lost during the dry- 
ing period. Drying times ranged from three 
minutes to sixteen hours. Experiments were 
carried out at temperatures of 25, 30, 35, 40, and 
50°C. 

The large ratio between the kernel diameter, 
d, = 0.28 cm., and the drying tube diameter, 
0.8 em., assured that each kernel was in direct con- 
tact with the tube wall, facilitating rapid conduc- 
tion of heat into the kernel. The degree of tem- 
perature control effected by this method was 
checked by comparing it with a more efficient 
method: single layers of kernels were dried afloat 
a pool of mercury in a pycnometer bottle. Mois- 
ture losses by the two methods were found to be 
identical. 

CORRELATION AND DISCUSSION OF RESULTS 

The experimental data were first plotted to 
show k = (mo - m)/df as a function of 4; to 
determine the applicability of eq. (20). The re- 
lation, exemplified by the data for 40°C. (Fig. 4), 
was found. to be essentially linear in the neighbor- 

* 

- 8 -  
Y - - - 0.1613 * 
0 
- 1  I 

0 
0 20 40 60 80 100 

6, sec.If2 
Fig. 4. k = (mo - G ) / d t  as a function of z/t and mo for 

the vacuum drying of wheat at 40°C. 

hood of t = 0, and the slope - b and the intercept 
ko were therefore calculated statistically. Table 
I11 shows the results for 40°C. (In this and in the 
following discussion. the moisture content, m, re- 
places the concentration, c. in the diffusion equa- 
tions.) 

The dynamic surface moisture content, given by 
eqs. (20)-(23) , was next evaluated at each tempera- 
ture. The intercept ko was found to be essentially 
a linear function of the initial moisture in the range 
of initial moistures 0.13-0.25 g./g. (Fig. 5). Sta- 
tistical calculation of the intercepts at  ko = 0 
gave surface moistures (Table IV) of 0.0989- 
0.1069 g./g. The slope -b was also found to be 
a linear function of the initial moisture (Fig. 6). 
Statistical calculation of the intercepts at b = 0 
gave nearly constant surface moistures averaging 
0.1157 g./g. (Table IV). The apparent disagree- 

TABLE I11 
Intermediate Data on the Vacuum Drying of Wheat a t  40°C. 

102ko 106b 
1051% ma - m, mo - m, 

m0, dt, ioQ, (dr = 50?, 104ko, 1066, (m, = 0.1034), (m, = 0.1157). 
g./g. sec . ' 1 2  sec.-l/2 sec.-'/2 sec.-l'Z sec.-l sec. - ' / a  sec. -l 

0.1311 45.0 3.01 2.96 3.43 0.093 1.238 (6.02)" 
0.1613 40.6 6.29 6.16 6.85 0.139 1.183 3.06 
0.1893 40.7 8.84 8.55 10.12 0.315 1.178 4.28 
0.202 38.9 10.90 10.55 12.07 0.304 1.224 3.53 
0.224 49.0 12.36 12.31 14.69 0.477 1.218 4.41 
0.249 47.7 15.0 14.88 17.46 0.515 1.200 3.87 
0.279 43.7 18.67 18.46 20.09 0.326 1.144 (2.05)' 

1.198 f 0.030 3.83 f 0.50 

These values were omitted in cakulating the mean. 
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2 2  

2 0  

mo, g m 4 m  

Fig. 5. The intercept ko as a function of initial moisture 
content and temperature. 

m,, gm /gm 

Fig. 6. The slope b as a function of initial moisture content 
and temperature. 

ment here with the values obtained from ko is 
not serious in its practical consequences, as is 
seen when the surface moisture is calculated from 
the regression of k on the initial moisture at  an 
intermediate value of d? (Fig. 7 and Table IV). 

20 - 
18- 

16- 
N 
1 
0: 14- 

E 

W 
u) 

12 - 
(5, 
\ 

o 
E l o -  

x- 8 - *' 
0 

6 -  
- 

4 -  

2 -  

Fig. 7. k = (mo - ,)/d/tas a function of initial moisture 
content and temperature at values at z//t intermediate be- 
tween zero and infinity. 

Comparison with the values for fi = 0, i.e., k = 
ko, shows that the actual drift in the dynamic value 
of m, with time is practically negligible at  drying 
times of ordinary interest. 

TABLE IV 
Dynamic Surface Moisture Contents in the Vacuum Drying 

of Wheat 

m,, g./g. 
Tempera- 
ture, "C. ko = 0 k = O  b = O  

25 0.1044 0.1045" 0.1159 
30 0.1037 0. 1057' 0.1173 
35 0.1069 0.1044' (0.1247)c 
40 0.1034 0 .  1013' 0.1142 
50 0.0989 0.0965* 0.1153 

0.1157 

a k evaluated at dc = 70 sec.'/2. 
' k evaluated at dT = 50 sec.l'l. 

This value was omitted in calculating the mean. 
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The above-calculated surface moisture contents 
have been given theoretical significance by the 
authors' recent analysis4 of the moisture desorp- 
tion isotherm of wheat. It is therein remarked 
that the surface moisture, 0.1157 g./g., intercepted 
by the regression of b on mo is quantitatively 
identifiable with the number of primary (low 
energy) sites available for sorption, while the 
surface moisture intercepted by the regression of 
ko on mo is quantitatively indentifiable with the 
number of primary sites actually occupied at 
saturation equilibrium a t  a given temperature. 
These surface moistures are thus correlated 
(inferentially) by the theoretical equation: 

K 
(m,),=, = 0.1157 - 

l + K  

where K = 3.05 X exp {6270/RT]. This 
equation gives a good, theoretically plausible 
description of the presently observed properties 
of the dynamic surface moisture content. 

The values of the surface moisture finally chosen 
for the correlation of the drying data were taken 
from the regression of ko on the initial moisture, 
for the following reasons: (1) theoretically, be- 
cause the diffusion coefficient is calculated from 
ko, and (2) p:actically, because the drift in the 
surface moist*!re with time among the present 
data is practidl: negligible, and i t  is least arbi- 
trary to  evaluate it a t  tiwe zero. 

To evaluate the diffusion coefficient, the mean 
value of ko/(mo - ma) was first calculated for 
each temperature, as exemplified by the data for 
40OC. (Table 111). Diffusion coefficients were 

TABLE V 
Diffusion Constants in the Vacuum Drying of Wheat 

f"(0!/2 
Temper- 

ature, mp, lO3/T, lo7 D, (Method (Method 
"C. g./g." OK.-' cm.Z/sec. I) 2) 

25 0.1045 3.356 0.869 0.300 0.340 
30 0.1045 3.300 1.223 0.273 0.306 
35 0.1045 3.247 1.700 0.253 0.287 
40 0.1034 3.195 2.314 0.312 0.338 
50 0.0989 3.096 4.229 0.329 0.360 

0.294 0.326 
- -  

a Average value of m, was used at 25, 30, and 35%, since 
departures from this average (Table IV)  are insignificant 
both theoretically4 and practically. 

then calculated from eq. (22) and are given in 
Table V. The relation between the diffusion 
coefficient and the absolute temperature (Fig. 8) 

follows the Arrhenius-type equation : 

D = Do exp (-E/RT) (32) 
where DO = 76.8 cm.2/sec. and E = 12.20 kcal./ 
mole. 

The shape-dependent coefficient in eq. (15), 
f"(O), was then evaluated by the following two 
methods. In  the first, the mean value of b/ 
(m, - m,) in the moisture range 0.15-0.25 (values 
too near b = 0 being eliminated), was calculated 

0.6 
3.1 3.2 3.3 

O K - '  
T 

Fig. 8. The diffusion coefficient as a function of the re- 
ciprocal of the absolute temperature. 

for each temperature, whereupon f"(0) was calcu- 
lated from eq. (23). The results (Table V) give 
a mean value f"(0) = 0.588. The diffusion equa- 
tion for vacuum drying of the wheat kernel in 
the neighborhood of t = 0 is therefore 

(33) 
2 W = 1 - - X + 0.294X2 6 

where 0.294 = f"(0)/2. The second method of 
calculating f"(0) led to  a small, empirica.1 correction 
of this equation. Mean values of b/(mo - m,*) 
were calculated (see exaxple in Table 111), and 
gave f"(0) = 0.652, (where ms* is the value of 
the surface given by the regression of b on the 
initial moisture). The corrected diffusion equation 
thus becomes 

x2 (34) 
2 mo - 0.1157 W = 1 - - X + 0.326 4 mo - m, 

where 0.326 = f"(0)/2 and 0.1157 = m,*. This 
equation describes exactly the results of statistical 
analysis of the data in the neighborhood of t = 0. 
However, in practice, eq. (33) is nearly as accurate 
and has the advantage of greater simplicity. 
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Fig. 9. General correlation of data on the vacuum drying of wheat a t  
initial moistures of 0.14-0.25 g./g., dry basis. 

It has been suggested in the theoretical section 
that eq. (33) can be used to  deduce a solution for 
the neighborhood of t = a. The value f"(0) = 
0.588 for the wheat kernel is intermediate between 
the values for the sphere and the infinitely long 
cylinder (Table I). With the assumption that. 
in this region, the relations between f"(0) and the 
constants 4 and p2 are linear (see Table I and Fig. 
2), these values for wheat are found to be 4 = 
0.94 and p2 = 1.301. Equation (24) then gives 
(Y = 0.862, whence a /p2  = 0.663. (For a com- 
parison with the plate, cylinder, and sphere, see 
Table I.) The diffusion equation for t.he vacuum 

drying of wheat in the neighborhood of t = a 

is, therefore, 

LQ = 0.663 exp { - 1.301X2) (35) 
Figure 9 shows the agreement between the ex- 

perimental data for initial moistures of 0.14- 
0.25 g./g. (the values of m, and D in Table V 
being used), and values calculated from eqs. 
(33) and (35). The residual sca.tter is attribut- 
able in part, to  the effects of abnormal size distri- 
butions in the seventy to  one hundred kernels 
comprising a drying sample. The standard devia- 
tion in the value of 1 - of the 233 points in 

0.51 I I I I I I I I I I 
0 0.4 0.8 1.2 I .6 2.0 

X 
Fig. 10. General correlation of data on the vacuum drying of wheat at ini- 

tial moistures of 0.26 and 0.279 g./g. 
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Fig. 11. General correlation of dvta on the vacuum drying of wheat at 

low initial moisture contents. 

the range 0 < X < 1.2, (0 < 1 - M < 0.9), is 
*3.9%. Because of the distribution in the value 
of f"(0) (Table V), the distribution of the indi- 
vidual deviations is not normal, but is bimodal with 
sharp peaks at  *2%. One half of the data fall 
between these peaks. At X = 1.4,l - Mexceeds 
unity, and thereafter continues to increase with 
increasing value of X .  This is because the value 
of the dyoamic surface moisture prevailing at low 
and intermediate values of X becomes meaningless 
when X closely approaches infinity; under vacuum 
conditions the true, static equilibrium condition 
at the surface is m, = 0, and drying continues until 
all moisture has been removed, i.e., f i  = 0. 

Figure 10 shows that the relative moisture losses 
1 - (based on t,he values of m, and D in Table 
V) for initial moistures of 0.26 and 0.279 g./g. 

were slightly higher than those in the range of 
0.14-0.25, to which eqs. (33) and (35) apply. 
In addition, the slopes b for these data were fre- 
quently subnormal (see Table 111). While this 
behavior may be due to an increase in the diffusion 
coefficient, it ma,y a.lso be that in this region, in 
which equilibrium water vapor pressures approach 
the saturation point,s capillary effects augment the 
purely diffusive flow. 

Figure 11 shows a correlation of data for initial 
moistures of 0.0761, 0.0907, 0.1078, and 0.1311 
g./g. The value of X is based on the diffusion 
coefficients in Table V, and the ratio Y = (1 - 
a ) / X  was calculated from the relation 

'F!" 

I I I I I I 1  I I I I I I  

m,, gm/gm 
Fig. 12. A correlation of apparent values of the driving potential P in the vacuum 

drying of wheat at low initial moisture contents. 
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Although the dynamic surface moistures prevailing 
in the moisture range 0.14-0.25 g./g. are meaning- 
less here, empirical driving potentials, P, can 
nevertheless be calculated from the relation, 
based on eq. (22): 

(37) 

where P = (mo -6z)/(l -a) in eq. (36). Figure 
12 shows these potentials (obtained on the basis of 
the diffusion coefficients in Table V) as a function 
of the initial moisture content at 25 and 50°C. 
The figure indicates that, in the moisture range of 
0.076-0.13 g./g.. 

P = amo(m0 - ms’) (38) 

where a = 2.83 and m,’ = 0.054 at 25”C., and a = 
2.53 and m,’ = 0.033 a t  50°C. While the meaning 
of this equation is not immediately clear, the 
simplest interpretation suggests that the diffusion 
coefficient here is actually proportiona,l to  the 
square of the moisture content and that m,’ is a 
dynamic surface moisture. Equation (37) thus 
becomes 

(39) 
2 s  k - - - (mo - m, ’ )dD’  “42 

where <D’ = amadz ;  and D is the value of the 
diffusion coefficient in the range of its constancy, 
0.14-0.25 g./g. (Table V). This interpretation is 
supported qualitatively by the fact that, in Figure 
11, f”(0) becomes increasingly abnormal as the 
moisture content decreases below 0.13 g./g. 
(indicating that the diffusion coefficient decreases 
with decreasing moisture content), f”(0) being 
approximately proportional to  1 + 7(0.13 - ma). 
An alternative but qualitatively similar explanation 
would make the diffusion coefficient proportional 
to  (mo - m,’)2 and the dynamic surface moisture 
equal to  zero: 

where &? = a(m0 - m s ‘ ) d B .  Generally, then, 
the diffusion coefficient appears to  increase with 
increasing moisture content in the moisture range 
0.076-0.13 g./g., and to  be independent of moisture 
content in the range 0.13-0.25 g./g. Its behavior 
at moistures below 0.076 g./g. cannot be con- 
jectured in the absence of experimental evidence! 
but it is clear that the drying rate must become 
very low indeed as the moisture conteat ap- 
proaches zero. 

Data of Jones6 on Vacuum Drying 

Jones studied the drying of three different 
varieties of wheat a t  an absolute pressure of 7 mm. 
Hg. Table VI shows the results obtained on 
applying eq. (33) to  his data. The only significant 
disagreement with the present results occurs in the 
case of mixed English Red wheat dried at 46”C., 
for which values of 1 - a are 11% higher than 
predicted. This behavior is not confirmed by the 
results for 30 and 40”C., and, generally, i t  appears 
from Jones’ and the present data that the botanical 
variety of wheat has no significant effect on the 
coefficient for the diffusion of moisture, and that 
the effect of the volume-average kernel size is 
obedient to the diffusion equations. Dynamic 
surface moistures in Jones’ experiments (Table 
VI) were slightly lower than in the present study 
(Table V). but this is probably due to  the different 
method of moisture determination employed by 
him (Jones air-dried coarsely ground samples 
four hours a t  120°C.). 

TABLE VI 

Jones.6 
Vacuum Drying of Wheat at 7 mm. Pressure.” Data of 

1 - li;i (corrected to V/S = 
0.045 cm.), a t  

mot 
g./g. 30°C. 4OOC. 46°C. 

B 0.220 
A 0.220 
C 0.220 
n 0.220 
B 0.138 
B 0.166 
D 0.228 
13 0.245 
C 0.299 
Mean 
Std. Dev., % 

0.275 
0.261 
0.267 
0.251 
0.264 
0.302 
0.276 
0.263 
0.275 
0.270 
4 . 6  

- 

0.353 
0.377 
0.375 
0.384 
0.389 
0.407 
0.372 

0.379 
4.0 

__ 

0.466 
0.466 
0.490 
0.47.5 

0.496 
0.500 
0.469 
0.481 
4 .0  

__ 

m,, d g .  0,103 0.0955 0.092 
1 0 3 / ~ ,  O K - ~  3.300 3.194 3.134 
1070, cm.2 sec. 1.10 2.31 4.00 

Values calculated from present results: 
107~4 cm.Z/sec. 1.22 2.33 3.40 
1 - l v  0.285 0.384 0.450 

a A: r,  = 0.1713 cm.; Manitoba “A” 
B: 
C: re = 0.1800 cm.; Atle 
D: r ,  = 0.1892 cm.; English Red 

r ,  = 0.1693 cm.; Manitoba “B” 

where r ,  is the radius of a sphere with the same volume as the 
wheat kernel, measured a t  10% moisture content, dry basis. 
Diffusion coefficients are calculated on the assumption that 
the shape factor is ~ = 0.80 
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Data of Becker and Sallansl on Air Drying 

In  a previous study, samples of wheat were 
dried in a stream of dry, isothermal air. Table 
VII  shows diffusion coefficients calculated from 

TABLE VII 

of Becker and Sallans’ 
(Series “B”: rU = 0.169 cm.; m, = 0.103 g./g.) 

Drying of Wheat in a Stream of Dry, Isothermal Air. Data 

107D, cm.Z/sec. 

Tem- 
pera- 
ture, 
“C. 1 - lG 

24.7 0.177 
44.3 0.352 
50.0 0.424 
52.8 0.442 
59.4 0.525 
67.3 0.620 
79.5 0.770 

F,q. 
(33) 
! J=  
0.80 

Preser, t. 
data 

0.79 
3.28 
5.20 
5.70 
8.52 

13.0 
29.4 

0.97 0.80 
3.75 3.10 
5.65 4.67 
6.35 5.25 
9.52 7.90 

15.0 12.4 
27.7 23.0 

0.85 
3.04 
4.32 
5.05 
7.30 

11.3 
21.3 

these data on the hypotheses that (1) eq. (33) is 
applicable with a shape factor of 0.80, as in the 
present study; (2) eq. (18) for spheres is applicable 
with a shape factor of unity, as previously assumed’; 
and (3) eq. (18) for spheres is applicable with a 
shape factor of 0.91 (with the assumption that the 
crease of the kernel is not exposed in air drying). 
The last hypothesis gives the best agreement with 
the present data. That this apparent applicability 
of the equation for spheres is not inconsistent with 
the present results is clear from eq. (34): except 
for the factor correcting for the drift in the dynamic 
surface moisture with drying time, which may 
quite conceivably be different in air drying, eq. 
(34) is practically identical with the equation for 
spheres in the neighborhood of X = 0, f”(0) = 

0.652 in eq. (34), while for a sphere, f”(0) = 0.661. 
Thus, the assumption previously made’ appears to  
be substantiated, that the only appreciable error 
in applying the equation for spheres to the air 
drying of wheat is in the multiplication of the 
diffusion coefficient by a constant shape factor. 
However, the suggestion’ that the diffusion co- 
efficient, after a sharp decrease as the moisture 
falls from 0.14 to  0.10 g./g., is constant in the 
moisture range 0.07-0.10 g./g. was based upon 
inconclusive evidence and must be discarded in 
view of the present results. While dynamic 
surface moistures in the air drying experiments, 
(at zero relative humidity), appeared to  be constant 
a t  0.103 g./g., i t  is probable that more extensive 

investigation will show a slight variation with 
temperature, as in the present study. 

Data of Simmonds, Ward, and McEwen7 on Air 
Drying 

Simmonds et al. studied the drying of shallow 
layers of wheat kernels at constant inlet air tem- 
perature and huzidity. While the air flows used 
by them were sufficient to  nullify the effects of 
external resistance to  mass transfer, they were not 
high enough to  provide reasonable control over 
the grain temperature, which increased gradually 
with drying time and approached the air inlet 
temperature only after prolonged drying. Con- 
sequently, the semilogarithmic drying law advanced 
by them to correlate their data, 

AT = exp t - y t )  

is partly the result of a fortuitous path in grain 
temperature, and, in view of the temperature 
dependence of the diffusion coefficient, is applicable 
only under conditions duplicating those prevailing 
in their experiments. Since the “constant” y is 
not, therefore, a point function, the inference of 
McEwen et a1.* that the resistance to drying 
resides almost entirely in the thin aleurone layer, 
just beneath the pericarp, is clearly invalid. That 
y is not independent of the path followed in drying 
has already been noted by Jones,g who pointed 
out that, a t  low air temperatures, a t  which the 
grain temperature was nearly constant, y decreased 
markedly with time. This behavior is in accord 
with the present results. It is to  be concluded, 
therefore, that no evidence has yet been found to  
indicate that variation of the diffusion coefficient 
with position in the wheat kernel is a factor of 
practical or theoretical consequence insofar as the 
overall phenomenon of drying is concerned. 

Viewed positively, the data of Simmonds et  al.’ 
are obedient to the diffusion equations in the 
dependence of the drying rate on kernel size. 
Their equilibrium moistures extrapolate to  a value 
of 0.085 g./g. a t  zero relative humidity, in rather 
good agreement with the present values of the 
dynamic surface moisture, considering that their 
drying rate curves were skewed by the variation 
of the grain temperature with drying time. It 
should be noted that the initial moistures in their 
experiments were very high, i.e., 0.4-0.65 g./g. 
(completely outside the range of 0.17-0.25 g./g. 
usually considered to be of practical importance 
in drying), and so their data are not directly com- 
parable with the present results. The high value 
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of these initial moistures was the factor chiefly 
responsible for the exaggerated variation of kernel 
temperature with time. 

NOMENCLATURE 

concentration of diffusing substance 
at  a point in a solid, g . / ~ m . ~  
initial, uniform concentration, g./ 
cm. 
concentration at  the bounding sur- 
face, g . / ~ m . ~  
average concentration, g . / ~ m . ~  
diffusion coefficient, cm.2/sec. 
diffusion constant (in Arrhenius equa- 
tion), cm. z/sec. 
energy of activation, cal./mol. 
function 
first, second, . . ., derivatives of f 
diffusion current (i.e., the specific 
rate of mass transfer), g./cm.2sec. 
initial, uniform moisture content, 
dry basis, g./g. 
moisture content at the bounding 
swface, dry basis; g./g. 
average moisture content, dry basis, 

an integer 
gas constant, cal./mol,"K. 
special coordinates, cm. 
radius of a sphere with the same 
volume as a given solid, cm. 
exposed surface area of a solid, cm.2 
absolute temperature, OK. 

time, sec. 
volume of a solid, ~ m . ~  
Cartesian coordinates, cm. 
density, g./cm. 
47rrO2/S = surface sphericity 

g./g* 

Dimensionless Factors in the Diffusion Equation 

c - cs c =--- 
co - cs 
c - cs C - 
co - cs 
m - ms jg =- 
mo - ms 

- ~- 

2 = 4 2 4 %  
S 
v x =-4% 

The author is indebted to Dr. C. R. Jones for information 
about the wheat used in his study.6 
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Synopsis 
A general mathematical approach to the rigorous treat- 

ment of experimental data on nonstationary-state diffusion 
in solids of complex shape is developed. The general solu- 
tion for a uniform initial concentration, cc, and a constant 
surface concentration, c,, at times greater than zero is shown 
to be of the form 

in the neighborhood of time zero, and 

c - c .  (Y ~- - -exp(  - b 2 ( $ ) ' D t }  
co - c, 82 

in the neighborhood of time infinity, where E is the average 
concentration at time t; S and V are the surface area and 
volume of the solid, respectively; D is the diffusion coef- 
ficient; and f"(O), 0, and 8 are constants dependent on solid 
shape. The vacuum drying of wheat has been studied, and 
it is shown that, for the wheat kernel, f " (0)  = 0.588, 01 = 
0.862; and 82 = 1.301. The diffusion coefficient is an Ar- 
rhenius-type function of temperature given by D = Do 
exp ( - E / R T ]  where Do = 76.8 cm.*/sec. and E = 12.20 
kcal./mole. 

R6sum6 
Une approximation mathematique g6nerale de l'examen 

rigoureux des donnees experimentales sur 1'6tat non-stat.ion- 
naire de la diffusion dans les solides de forme complexe est 
d6velopp6e. La solution g6nerale pour une concentration 
initiale uniform, co, et une concentration constante en sur- 
face, e,, $. des temps plus grands que zero semble &re de la 
forme suivante 

Y = (1 - B ) / X  
(Y. p, 4 = constants 
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aux environs du temps zbro, e t  

aux environs de l’infini, oh c est la concentration moyenne 
au temps t; et V sont respectivement la surface et  le vol- 
ume du solide; D est le coefficient de diffusion; e t  f”(O), 
a, et  fi  sont des constantes d6pendant de la forme du solide. 
Le shchage sous vide du bl6 a 6t6 6tudiBe et on montre que 
pour le grain de blef”(0) = 0,588, CY = 0,862, et  p2 = 1,301. 
Le coefficient. de diffusion, fonction de la tempCature, est 
du type Arrhenius et don& par D = DO exp { - E / R T }  oh 
DO = 76.8 cm2/sec et  E = 12,20 kcal/mol. 

Zusammenfassung 
Eine allgemeine mathematische Methode zur strengen 

Behandlung der experimentellen Ergebnisse bezuglich 
nichtstationarer DiEusionszustande in Festkorpern von 
komplexer Gestalt wird entwickelt. Es wird gezeigt, dass 
die allgemeine Losung fur einheitliche Anfangskonzentra- 

tion, a, und konstante Oberflachenkonzentration, cs, bei 
einer Diffusionsdauer grosser als Null von der Form 

in der Nachbarschaft der Zeit Null, und 

in der Nachbarschaft der Zeit unendlich ist, wo c die mittlere 
Konzent,ration zur Zeit t ist; S und V sind Oberflachengrosse 
bzw. Volumen des Festkorpers; D ist der Diffusionskoef- 
fizient undf”(O), a und p sind Konstante, die von der Gestalt 
des Festkorpers abhangen. Es wurde die Vakuumtrock- 
nung von Weizen untersucht und es wird gezeigt, dass fur 
das Weizenkornf”(0) = 0,588, a = 0,862 und 82 = 1,301 
ist. Fur die Temperaturabhangigkeit des Diffusionskoef- 
fieienten gilt eine Arrheniusgleichung D = Do exp ( - E/RT ] 
wo Do = 76,s cm2/sec und E = 12,20 kcal/Mol. 
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